Patients take care of what their teeth will be like after the orthodontics. Orthodontists usually describe the expectation movement based on the original smile images, which is unconvincing. The growth of deep-learning generative models change this situation. It can visualize the outcome of orthodontic treatment and help patients foresee their future teeth and facial appearance. While previous studies mainly focus on 2D or 3D virtual treatment outcome (VTO) at a profile level, the problem of simulating treatment outcome at a frontal facial image is poorly explored. In this paper, we build an efficient and accurate system for simulating virtual teeth alignment effects in a frontal facial image. Our system takes a frontal face image of a patient with visible malpositioned teeth and the patient's 3D scanned teeth model as input, and progressively generates the visual results of the patient's teeth given the specific orthodontics planning steps from the doctor (i.e., the specification of translations and rotations of individual tooth). We design a multi-modal encoder-decoder based generative model to synthesize identity-preserving frontal facial images with aligned teeth. In addition, the original image color information is used to optimize the orthodontic outcomes, making the results more natural. We conduct extensive qualitative and clinical experiments and also a pilot study to validate our method.
translated by 谷歌翻译
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
translated by 谷歌翻译
In the field of antibody engineering, an essential task is to design a novel antibody whose paratopes bind to a specific antigen with correct epitopes. Understanding antibody structure and its paratope can facilitate a mechanistic understanding of its function. Therefore, antibody structure prediction from its sequence alone has always been a highly valuable problem for de novo antibody design. AlphaFold2, a breakthrough in the field of structural biology, provides a solution to predict protein structure based on protein sequences and computationally expensive coevolutionary multiple sequence alignments (MSAs). However, the computational efficiency and undesirable prediction accuracy of antibodies, especially on the complementarity-determining regions (CDRs) of antibodies limit their applications in the industrially high-throughput drug design. To learn an informative representation of antibodies, we employed a deep antibody language model (ALM) on curated sequences from the observed antibody space database via a transformer model. We also developed a novel model named xTrimoABFold to predict antibody structure from antibody sequence based on the pretrained ALM as well as efficient evoformers and structural modules. The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss. xTrimoABFold outperforms AlphaFold2 and other protein language model based SOTAs, e.g., OmegaFold, HelixFold-Single, and IgFold with a large significant margin (30+\% improvement on RMSD) while performing 151 times faster than AlphaFold2. To the best of our knowledge, xTrimoABFold achieved state-of-the-art antibody structure prediction. Its improvement in both accuracy and efficiency makes it a valuable tool for de novo antibody design and could make further improvements in immuno-theory.
translated by 谷歌翻译
Fine-tuning pre-trained models has been ubiquitously proven to be effective in a wide range of NLP tasks. However, fine-tuning the whole model is parameter inefficient as it always yields an entirely new model for each task. Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks. These methods achieve surprisingly good performance and are shown to be more stable than their corresponding fully fine-tuned counterparts. However, such kind of methods is still not well understood. Some natural questions arise: How does the parameter sparsity lead to promising performance? Why is the model more stable than the fully fine-tuned models? How to choose the tunable parameters? In this paper, we first categorize the existing methods into random approaches, rule-based approaches, and projection-based approaches based on how they choose which parameters to tune. Then, we show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them. We indicate that the sparsity is actually imposing a regularization on the original model by controlling the upper bound of the stability. Such stability leads to better generalization capability which has been empirically observed in a lot of recent research works. Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters. To better choose the tunable parameters, we propose a novel Second-order Approximation Method (SAM) which approximates the original problem with an analytically solvable optimization function. The tunable parameters are determined by directly optimizing the approximation function. The experimental results show that our proposed SAM model outperforms many strong baseline models and it also verifies our theoretical analysis.
translated by 谷歌翻译
Radar, the only sensor that could provide reliable perception capability in all weather conditions at an affordable cost, has been widely accepted as a key supplement to camera and LiDAR in modern advanced driver assistance systems (ADAS) and autonomous driving systems. Recent state-of-the-art works reveal that fusion of radar and LiDAR can lead to robust detection in adverse weather, such as fog. However, these methods still suffer from low accuracy of bounding box estimations. This paper proposes a bird's-eye view (BEV) fusion learning for an anchor box-free object detection system, which uses the feature derived from the radar range-azimuth heatmap and the LiDAR point cloud to estimate the possible objects. Different label assignment strategies have been designed to facilitate the consistency between the classification of foreground or background anchor points and the corresponding bounding box regressions. Furthermore, the performance of the proposed object detector can be further enhanced by employing a novel interactive transformer module. We demonstrated the superior performance of the proposed methods in this paper using the recently published Oxford Radar RobotCar (ORR) dataset. We showed that the accuracy of our system significantly outperforms the other state-of-the-art methods by a large margin.
translated by 谷歌翻译
关于多模式情绪识别的最新作品转向端到端模型,该模型可以提取与两阶段管道相比,目标任务监督的特定任务特征。但是,以前的方法仅模拟文本和声学和视觉方式之间的特征相互作用,而忽略了捕获声学和视觉方式之间的特征相互作用。在本文中,我们提出了多模式的端到端变压器(ME2ET),该变压器可以有效地对低级和高级水平的文本,声学和视觉方式之间的三模式特征进行建模。在低水平,我们提出了进行性三模式的注意,可以通过采用两次通行策略来对三模式特征相互作用进行建模,并可以进一步利用这种相互作用,以通过降低输入令牌来显着降低计算和记忆复杂性长度。在高水平上,我们引入了三模式特征融合层,以明确汇总三种模式的语义表示。 CMU-MOSEI和IEMOCAP数据集的实验结果表明,ME2ET实现了最新性能。进一步的深入分析证明了拟议的渐进三模式关注的有效性,效率和解释性,这可以帮助我们的模型实现更好的性能,同时显着降低计算和记忆成本。我们的代码将公开可用。
translated by 谷歌翻译
尽管人工智能(AI)在理解各个领域的分子方面取得了重大进展,但现有模型通常从单个分子模态中获得单个认知能力。由于分子知识的层次结构是深刻的,即使人类也从不同的方式中学习,包括直觉图和专业文本,以帮助他们的理解。受到这一点的启发,我们提出了一个分子多模式基础模型,该模型是从分子图及其语义相关的文本数据(从发表的科学引用索引论文中爬立)的。该AI模型代表了直接桥接分子图和自然语言的关键尝试。重要的是,通过捕获两种方式的特定和互补信息,我们提出的模型可以更好地掌握分子专业知识。实验结果表明,我们的模型不仅在诸如跨模式检索和分子标题之类的跨模式任务中表现出有希望的性能,而且还可以增强分子属性预测,并具有从自然语言描述中产生有意义的分子图的能力。我们认为,我们的模型将对跨生物学,化学,材料,环境和医学等学科的AI能力领域产生广泛的影响。
translated by 谷歌翻译
在本文中,我们研究了2D视图中3D场景几何分解和操纵的问题。通过利用最新的隐式神经表示技术,尤其是吸引人的神经辐射领域,我们引入了一个对象字段组件,以了解仅从2D监督的3D空间中所有单个对象的独特代码。该组件的关键是一系列精心设计的损失函数,以使每个3D点,尤其是在非占用空间中,即使没有3D标签,也可以有效地优化。此外,我们引入了一种反查询算法,以自由操纵学习的场景表示中的任何指定的3D对象形状。值得注意的是,我们的操纵算法可以明确解决关键问题,例如对象碰撞和视觉遮挡。我们的方法称为DM-NERF,是最早在单个管道中同时重建,分解,操纵和渲染复杂3D场景的方法之一。在三个数据集上进行的大量实验清楚地表明,我们的方法可以从2D视图中准确分解所有3D对象,从而允许在3D空间中自由操纵任何感兴趣的对象,例如翻译,旋转,尺寸调整和变形。
translated by 谷歌翻译
基于卷积神经网络(CNN)的方法提供了有效的解决方案,以增强压缩图像和视频的质量。但是,这些方法忽略了使用原始数据增强质量的方法。在本文中,我们通过提出一种基于在线学习的方法来采用HEVC内编码图像的质量增强质量增强图。当需要增强质量时,我们在线训练我们在编码器端提出的模型,然后使用参数来更新解码器端的模型。该方法不仅可以改善模型性能,而且还可以使一个模型可用于多个编码方案。此外,离散余弦变换(DCT)系数中的量化误差是各种HEVC压缩伪像的根本原因。因此,我们结合了频域先验以协助图像重建。我们设计了基于DCT的卷积层,以生成适合CNN学习的DCT系数。实验结果表明,与最先进的方法相比,我们提出的基于在线学习的双域网络(OL-DN)取得了出色的性能。
translated by 谷歌翻译
多模式的细粒情感分析最近由于其广泛的应用而引起了人们的关注。但是,现有的多模式细颗粒情感数据集最关注注释文本中的细粒元素,但忽略图像中的元素,这导致视觉内容中的细粒度元素没有得到应有的全部关注。在本文中,我们提出了一个新的数据集,即多模式方面类别情感分析(MACSA)数据集,其中包含超过21k的文本图像对。该数据集为文本和视觉内容提供细粒度的注释,并首先将方面类别用作枢轴,以对齐两种模态之间的细粒元素。基于我们的数据集,我们提出了多模式ACSA任务和基于多模式的对齐模型(MGAM),该模型(MGAM)采用了细粒度的跨模式融合方法。实验结果表明,我们的方法可以促进基线比较,以实现该语料库的未来研究。我们将使数据集和代码公开可用。
translated by 谷歌翻译